extension | φ:Q→Aut N | d | ρ | Label | ID |
C56⋊C23 = D7×C8⋊C22 | φ: C23/C1 → C23 ⊆ Aut C56 | 56 | 8+ | C56:C2^3 | 448,1225 |
C56⋊2C23 = C2×C8⋊D14 | φ: C23/C2 → C22 ⊆ Aut C56 | 112 | | C56:2C2^3 | 448,1199 |
C56⋊3C23 = C2×D7×D8 | φ: C23/C2 → C22 ⊆ Aut C56 | 112 | | C56:3C2^3 | 448,1207 |
C56⋊4C23 = C2×D56⋊C2 | φ: C23/C2 → C22 ⊆ Aut C56 | 112 | | C56:4C2^3 | 448,1212 |
C56⋊5C23 = C2×D8⋊D7 | φ: C23/C2 → C22 ⊆ Aut C56 | 112 | | C56:5C2^3 | 448,1208 |
C56⋊6C23 = C2×D7×SD16 | φ: C23/C2 → C22 ⊆ Aut C56 | 112 | | C56:6C2^3 | 448,1211 |
C56⋊7C23 = C2×D7×M4(2) | φ: C23/C2 → C22 ⊆ Aut C56 | 112 | | C56:7C2^3 | 448,1196 |
C56⋊8C23 = C14×C8⋊C22 | φ: C23/C2 → C22 ⊆ Aut C56 | 112 | | C56:8C2^3 | 448,1356 |
C56⋊9C23 = C22×D56 | φ: C23/C22 → C2 ⊆ Aut C56 | 224 | | C56:9C2^3 | 448,1193 |
C56⋊10C23 = C22×C56⋊C2 | φ: C23/C22 → C2 ⊆ Aut C56 | 224 | | C56:10C2^3 | 448,1192 |
C56⋊11C23 = D7×C22×C8 | φ: C23/C22 → C2 ⊆ Aut C56 | 224 | | C56:11C2^3 | 448,1189 |
C56⋊12C23 = C22×C8⋊D7 | φ: C23/C22 → C2 ⊆ Aut C56 | 224 | | C56:12C2^3 | 448,1190 |
C56⋊13C23 = D8×C2×C14 | φ: C23/C22 → C2 ⊆ Aut C56 | 224 | | C56:13C2^3 | 448,1352 |
C56⋊14C23 = SD16×C2×C14 | φ: C23/C22 → C2 ⊆ Aut C56 | 224 | | C56:14C2^3 | 448,1353 |
C56⋊15C23 = M4(2)×C2×C14 | φ: C23/C22 → C2 ⊆ Aut C56 | 224 | | C56:15C2^3 | 448,1349 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
C56.1C23 = SD16⋊D14 | φ: C23/C1 → C23 ⊆ Aut C56 | 112 | 8- | C56.1C2^3 | 448,1226 |
C56.2C23 = D8⋊5D14 | φ: C23/C1 → C23 ⊆ Aut C56 | 112 | 8+ | C56.2C2^3 | 448,1227 |
C56.3C23 = D8⋊6D14 | φ: C23/C1 → C23 ⊆ Aut C56 | 112 | 8- | C56.3C2^3 | 448,1228 |
C56.4C23 = D7×C8.C22 | φ: C23/C1 → C23 ⊆ Aut C56 | 112 | 8- | C56.4C2^3 | 448,1229 |
C56.5C23 = D56⋊C22 | φ: C23/C1 → C23 ⊆ Aut C56 | 112 | 8+ | C56.5C2^3 | 448,1230 |
C56.6C23 = C56.C23 | φ: C23/C1 → C23 ⊆ Aut C56 | 112 | 8+ | C56.6C2^3 | 448,1231 |
C56.7C23 = D28.44D4 | φ: C23/C1 → C23 ⊆ Aut C56 | 224 | 8- | C56.7C2^3 | 448,1232 |
C56.8C23 = C2×C8.D14 | φ: C23/C2 → C22 ⊆ Aut C56 | 224 | | C56.8C2^3 | 448,1200 |
C56.9C23 = C56.9C23 | φ: C23/C2 → C22 ⊆ Aut C56 | 112 | 4 | C56.9C2^3 | 448,1201 |
C56.10C23 = D4.11D28 | φ: C23/C2 → C22 ⊆ Aut C56 | 112 | 4 | C56.10C2^3 | 448,1204 |
C56.11C23 = D4.12D28 | φ: C23/C2 → C22 ⊆ Aut C56 | 112 | 4+ | C56.11C2^3 | 448,1205 |
C56.12C23 = D4.13D28 | φ: C23/C2 → C22 ⊆ Aut C56 | 224 | 4- | C56.12C2^3 | 448,1206 |
C56.13C23 = D7×D16 | φ: C23/C2 → C22 ⊆ Aut C56 | 112 | 4+ | C56.13C2^3 | 448,444 |
C56.14C23 = D8⋊D14 | φ: C23/C2 → C22 ⊆ Aut C56 | 112 | 4 | C56.14C2^3 | 448,445 |
C56.15C23 = D16⋊3D7 | φ: C23/C2 → C22 ⊆ Aut C56 | 224 | 4- | C56.15C2^3 | 448,446 |
C56.16C23 = D7×SD32 | φ: C23/C2 → C22 ⊆ Aut C56 | 112 | 4 | C56.16C2^3 | 448,447 |
C56.17C23 = D112⋊C2 | φ: C23/C2 → C22 ⊆ Aut C56 | 112 | 4+ | C56.17C2^3 | 448,448 |
C56.18C23 = SD32⋊D7 | φ: C23/C2 → C22 ⊆ Aut C56 | 224 | 4- | C56.18C2^3 | 448,449 |
C56.19C23 = SD32⋊3D7 | φ: C23/C2 → C22 ⊆ Aut C56 | 224 | 4 | C56.19C2^3 | 448,450 |
C56.20C23 = D7×Q32 | φ: C23/C2 → C22 ⊆ Aut C56 | 224 | 4- | C56.20C2^3 | 448,451 |
C56.21C23 = Q32⋊D7 | φ: C23/C2 → C22 ⊆ Aut C56 | 224 | 4 | C56.21C2^3 | 448,452 |
C56.22C23 = Q32⋊3D7 | φ: C23/C2 → C22 ⊆ Aut C56 | 224 | 4+ | C56.22C2^3 | 448,453 |
C56.23C23 = C2×C7⋊D16 | φ: C23/C2 → C22 ⊆ Aut C56 | 224 | | C56.23C2^3 | 448,680 |
C56.24C23 = D8.D14 | φ: C23/C2 → C22 ⊆ Aut C56 | 112 | 4 | C56.24C2^3 | 448,681 |
C56.25C23 = C2×D8.D7 | φ: C23/C2 → C22 ⊆ Aut C56 | 224 | | C56.25C2^3 | 448,682 |
C56.26C23 = C2×C7⋊SD32 | φ: C23/C2 → C22 ⊆ Aut C56 | 224 | | C56.26C2^3 | 448,712 |
C56.27C23 = Q16.D14 | φ: C23/C2 → C22 ⊆ Aut C56 | 224 | 4 | C56.27C2^3 | 448,713 |
C56.28C23 = C2×C7⋊Q32 | φ: C23/C2 → C22 ⊆ Aut C56 | 448 | | C56.28C2^3 | 448,714 |
C56.29C23 = Q16⋊D14 | φ: C23/C2 → C22 ⊆ Aut C56 | 112 | 4+ | C56.29C2^3 | 448,727 |
C56.30C23 = C56.30C23 | φ: C23/C2 → C22 ⊆ Aut C56 | 224 | 4 | C56.30C2^3 | 448,728 |
C56.31C23 = C56.31C23 | φ: C23/C2 → C22 ⊆ Aut C56 | 224 | 4- | C56.31C2^3 | 448,729 |
C56.32C23 = C2×D8⋊3D7 | φ: C23/C2 → C22 ⊆ Aut C56 | 224 | | C56.32C2^3 | 448,1209 |
C56.33C23 = C2×D7×Q16 | φ: C23/C2 → C22 ⊆ Aut C56 | 224 | | C56.33C2^3 | 448,1216 |
C56.34C23 = C2×Q8.D14 | φ: C23/C2 → C22 ⊆ Aut C56 | 224 | | C56.34C2^3 | 448,1218 |
C56.35C23 = C2×SD16⋊D7 | φ: C23/C2 → C22 ⊆ Aut C56 | 224 | | C56.35C2^3 | 448,1213 |
C56.36C23 = D28.29D4 | φ: C23/C2 → C22 ⊆ Aut C56 | 112 | 4 | C56.36C2^3 | 448,1215 |
C56.37C23 = D8⋊10D14 | φ: C23/C2 → C22 ⊆ Aut C56 | 112 | 4 | C56.37C2^3 | 448,1221 |
C56.38C23 = D8⋊15D14 | φ: C23/C2 → C22 ⊆ Aut C56 | 112 | 4+ | C56.38C2^3 | 448,1222 |
C56.39C23 = D8.10D14 | φ: C23/C2 → C22 ⊆ Aut C56 | 224 | 4- | C56.39C2^3 | 448,1224 |
C56.40C23 = D8⋊13D14 | φ: C23/C2 → C22 ⊆ Aut C56 | 112 | 4 | C56.40C2^3 | 448,1210 |
C56.41C23 = C2×Q16⋊D7 | φ: C23/C2 → C22 ⊆ Aut C56 | 224 | | C56.41C2^3 | 448,1217 |
C56.42C23 = D28.30D4 | φ: C23/C2 → C22 ⊆ Aut C56 | 224 | 4 | C56.42C2^3 | 448,1219 |
C56.43C23 = D8⋊11D14 | φ: C23/C2 → C22 ⊆ Aut C56 | 112 | 4 | C56.43C2^3 | 448,1223 |
C56.44C23 = C2×SD16⋊3D7 | φ: C23/C2 → C22 ⊆ Aut C56 | 224 | | C56.44C2^3 | 448,1214 |
C56.45C23 = D7×C4○D8 | φ: C23/C2 → C22 ⊆ Aut C56 | 112 | 4 | C56.45C2^3 | 448,1220 |
C56.46C23 = C2×D28.C4 | φ: C23/C2 → C22 ⊆ Aut C56 | 224 | | C56.46C2^3 | 448,1197 |
C56.47C23 = C28.70C24 | φ: C23/C2 → C22 ⊆ Aut C56 | 112 | 4 | C56.47C2^3 | 448,1198 |
C56.48C23 = D7×C8○D4 | φ: C23/C2 → C22 ⊆ Aut C56 | 112 | 4 | C56.48C2^3 | 448,1202 |
C56.49C23 = C56.49C23 | φ: C23/C2 → C22 ⊆ Aut C56 | 112 | 4 | C56.49C2^3 | 448,1203 |
C56.50C23 = C14×C8.C22 | φ: C23/C2 → C22 ⊆ Aut C56 | 224 | | C56.50C2^3 | 448,1357 |
C56.51C23 = C7×D8⋊C22 | φ: C23/C2 → C22 ⊆ Aut C56 | 112 | 4 | C56.51C2^3 | 448,1358 |
C56.52C23 = C7×D4○D8 | φ: C23/C2 → C22 ⊆ Aut C56 | 112 | 4 | C56.52C2^3 | 448,1359 |
C56.53C23 = C7×D4○SD16 | φ: C23/C2 → C22 ⊆ Aut C56 | 112 | 4 | C56.53C2^3 | 448,1360 |
C56.54C23 = C7×Q8○D8 | φ: C23/C2 → C22 ⊆ Aut C56 | 224 | 4 | C56.54C2^3 | 448,1361 |
C56.55C23 = C2×D112 | φ: C23/C22 → C2 ⊆ Aut C56 | 224 | | C56.55C2^3 | 448,436 |
C56.56C23 = C2×C112⋊C2 | φ: C23/C22 → C2 ⊆ Aut C56 | 224 | | C56.56C2^3 | 448,437 |
C56.57C23 = D112⋊7C2 | φ: C23/C22 → C2 ⊆ Aut C56 | 224 | 2 | C56.57C2^3 | 448,438 |
C56.58C23 = C2×Dic56 | φ: C23/C22 → C2 ⊆ Aut C56 | 448 | | C56.58C2^3 | 448,439 |
C56.59C23 = C16⋊D14 | φ: C23/C22 → C2 ⊆ Aut C56 | 112 | 4+ | C56.59C2^3 | 448,442 |
C56.60C23 = C16.D14 | φ: C23/C22 → C2 ⊆ Aut C56 | 224 | 4- | C56.60C2^3 | 448,443 |
C56.61C23 = C22×Dic28 | φ: C23/C22 → C2 ⊆ Aut C56 | 448 | | C56.61C2^3 | 448,1195 |
C56.62C23 = C2×D56⋊7C2 | φ: C23/C22 → C2 ⊆ Aut C56 | 224 | | C56.62C2^3 | 448,1194 |
C56.63C23 = D7×C2×C16 | φ: C23/C22 → C2 ⊆ Aut C56 | 224 | | C56.63C2^3 | 448,433 |
C56.64C23 = C2×C16⋊D7 | φ: C23/C22 → C2 ⊆ Aut C56 | 224 | | C56.64C2^3 | 448,434 |
C56.65C23 = D28.4C8 | φ: C23/C22 → C2 ⊆ Aut C56 | 224 | 2 | C56.65C2^3 | 448,435 |
C56.66C23 = D7×M5(2) | φ: C23/C22 → C2 ⊆ Aut C56 | 112 | 4 | C56.66C2^3 | 448,440 |
C56.67C23 = C16.12D14 | φ: C23/C22 → C2 ⊆ Aut C56 | 224 | 4 | C56.67C2^3 | 448,441 |
C56.68C23 = C22×C7⋊C16 | φ: C23/C22 → C2 ⊆ Aut C56 | 448 | | C56.68C2^3 | 448,630 |
C56.69C23 = C2×C28.C8 | φ: C23/C22 → C2 ⊆ Aut C56 | 224 | | C56.69C2^3 | 448,631 |
C56.70C23 = C56.70C23 | φ: C23/C22 → C2 ⊆ Aut C56 | 224 | 4 | C56.70C2^3 | 448,674 |
C56.71C23 = C2×D28.2C4 | φ: C23/C22 → C2 ⊆ Aut C56 | 224 | | C56.71C2^3 | 448,1191 |
C56.72C23 = C14×D16 | φ: C23/C22 → C2 ⊆ Aut C56 | 224 | | C56.72C2^3 | 448,913 |
C56.73C23 = C14×SD32 | φ: C23/C22 → C2 ⊆ Aut C56 | 224 | | C56.73C2^3 | 448,914 |
C56.74C23 = C14×Q32 | φ: C23/C22 → C2 ⊆ Aut C56 | 448 | | C56.74C2^3 | 448,915 |
C56.75C23 = C7×C4○D16 | φ: C23/C22 → C2 ⊆ Aut C56 | 224 | 2 | C56.75C2^3 | 448,916 |
C56.76C23 = C7×C16⋊C22 | φ: C23/C22 → C2 ⊆ Aut C56 | 112 | 4 | C56.76C2^3 | 448,917 |
C56.77C23 = C7×Q32⋊C2 | φ: C23/C22 → C2 ⊆ Aut C56 | 224 | 4 | C56.77C2^3 | 448,918 |
C56.78C23 = Q16×C2×C14 | φ: C23/C22 → C2 ⊆ Aut C56 | 448 | | C56.78C2^3 | 448,1354 |
C56.79C23 = C14×C4○D8 | φ: C23/C22 → C2 ⊆ Aut C56 | 224 | | C56.79C2^3 | 448,1355 |
C56.80C23 = C14×C8○D4 | φ: C23/C22 → C2 ⊆ Aut C56 | 224 | | C56.80C2^3 | 448,1350 |
C56.81C23 = C7×Q8○M4(2) | φ: C23/C22 → C2 ⊆ Aut C56 | 112 | 4 | C56.81C2^3 | 448,1351 |
C56.82C23 = C14×M5(2) | central extension (φ=1) | 224 | | C56.82C2^3 | 448,911 |
C56.83C23 = C7×D4○C16 | central extension (φ=1) | 224 | 2 | C56.83C2^3 | 448,912 |